Ana içeriğe git

Konu özeti

  • LO27. Constructing research questions that require data collection

    Bar charts show information using bars to represent numbers.

    The bar chart below shows how many children chose each activity as their favorite thing to do on a hot day.

    The ice cream eating stick is at 120 level, which indicates that 120 children choose to eat ice cream as their favorite activity on hot days.


    • Etkinliği tamamlayın
  • LO28. Collecting data on research questions and displaying data with a frequency table and bar graph

    We want to get information about the players in a football game. With this information, let's create events to learn the most expensive, oldest, highest-paid players and their countries with the help of graphics.


    • LO29. Solving problems requiring interpreting data represented by frequency tables or bar graphs

      The datasets provided include the players data for the FIFA. Columns are consist of properties of players. This columns are players nationality, name, age, overall ability score, club, value, weekly wage and preferred foot.;

      IDNameAgeNationalityOverallClubValueWagePreferred_Foot
      1L. Messi31Argentina94FC Barcelona€110.5M565000Left
      8L. Suárez31Uruguay91FC Barcelona€80M455000Right
      7L. Modrić32Croatia91Real Madrid€67M420000Right
      2Cristiano Ronaldo33Portugal94Juventus€77M405000Right
      9Sergio Ramos32Spain91Real Madrid€51M380000Right
      12T. Kroos28Germany90Real Madrid€76.5M355000Right
      5K. De Bruyne27Belgium91Manchester City€102M355000Right
      6E. Hazard27Belgium91Chelsea€93M340000Right
      21Sergio Busquets29Spain89FC Barcelona€51.5M315000Right
      29J. Rodríguez26Colombia88FC Bayern München€69.5M315000Left
      24S. Agüero30Argentina89Manchester City€64.5M300000Right
      3Neymar Jr26Brazil92Paris Saint-Germain€118.5M290000Right
      14David Silva32Spain90Manchester City€60M285000Left
      28Casemiro26Brazil88Real Madrid€59.5M285000Right
      4De Gea27Spain91Manchester United€72M260000Right
      27M. Salah26Egypt88Liverpool€69.5M255000Left
      19M. ter Stegen26Germany89FC Barcelona€58M240000Right
      20T. Courtois26Belgium89Real Madrid€53.5M240000Left
      15N. Kanté27France89Chelsea€63M225000Right
      25G. Chiellini33Italy89Juventus€27M215000Left
      11R. Lewandowski29Poland90FC Bayern München€77M205000Right
      16P. Dybala24Argentina89Juventus€89M205000Left
      17H. Kane24England89Tottenham Hotspur€83.5M205000Right
      22E. Cavani31Uruguay89Paris Saint-Germain€60M200000Right
      10J. Oblak25Slovenia90Atlético Madrid€68M194000Right
      30L. Insigne27Italy88Napoli€62M165000Right
      18A. Griezmann27France89Atlético Madrid€78M145000Left
      23M. Neuer32Germany89FC Bayern München€38M130000Right
      13D. Godín32Uruguay90Atlético Madrid€44M125000Right
      26K. Mbappé19France88Paris Saint-Germain€81M100000Right







    • LO30. Solving problems requiring interpreting data represented by frequency tables or bar graphs